Drift increases the advantage of sex in RNA bacteriophage Phi6.

نویسندگان

  • Art Poon
  • Lin Chao
چکیده

The pervasiveness of sex and recombination remains one of the most enigmatic problems in evolutionary biology. According to many theoretical models, recombination can increase the rate of adaptation by restoring genetic variation. However, the potential for genetic drift to generate conditions that produce this outcome has yet to be studied experimentally. We have designed and performed an experiment that reveals the effects of drift on existing genetic variation by minimizing the influence of variation on beneficial mutation rate. Our experiment was conducted in populations of RNA bacteriophage Phi6 initiated from a common source population at varying bottleneck sizes. The segmented genome of this virus results in genetic exchange between viruses that co-infect the same host cell. In response to selection for growth in a high-temperature environment, sexual lines outperformed their asexual counterparts on average. The advantage of sex attenuated with increasing effective population size, implying that the rate of adaptation was limited by clonal interference among segments caused by drift. This is the first empirical evidence that the advantage of sex during adaptation increases with the intensity of drift.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Co-infection weakens selection against epistatic mutations in RNA viruses.

Co-infection may be beneficial in large populations of viruses because it permits sexual exchange between viruses that is useful in combating the mutational load. This advantage of sex should be especially substantial when mutations interact through negative epistasis. In contrast, co-infection may be detrimental because it allows virus complementation, where inferior genotypes profit from supe...

متن کامل

Comparison of polymerase subunits from double-stranded RNA bacteriophages.

The family Cystoviridae comprises several bacteriophages with double-stranded RNA (dsRNA) genomes. We have previously purified the catalytic polymerase subunit (Pol) of one of the Cystoviridae members, bacteriophage phi6, and shown that the protein can catalyze RNA synthesis in vitro. In this reaction, both bacteriophage-specific and heterologous RNAs can serve as templates, but those containin...

متن کامل

Nontemplated terminal nucleotidyltransferase activity of double-stranded RNA bacteriophage phi6 RNA-dependent RNA polymerase.

The replication and transcription of double-stranded RNA (dsRNA) viruses occur within a polymerase complex particle in which the viral genome is enclosed throughout the entire life cycle of the virus. A single protein subunit in the polymerase complex is responsible for the template-dependent RNA polymerization activity. The isolated polymerase subunit of the dsRNA bacteriophage phi6 was previo...

متن کامل

Hybrid frequencies confirm limit to coinfection in the RNA bacteriophage phi6.

Coinfection of the same host cell by multiple viruses may lead to increased competition for limited cellular resources, thus reducing the fitness of an individual virus. Selection should favor viruses that can limit or prevent coinfection, and it is not surprising that many viruses have evolved mechanisms to do so. Here we explore whether coinfection is limited in the RNA bacteriophage phi6 tha...

متن کامل

Sex and the evolution of intrahost competition in RNA virus phi6.

Sex allows beneficial mutations that occur in separate lineages to be fixed in the same genome. For this reason, the Fisher-Muller model predicts that adaptation to the environment is more rapid in a large sexual population than in an equally large asexual population. Sexual reproduction occurs in populations of the RNA virus phi6 when multiple bacteriophages coinfect the same host cell. Here, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genetics

دوره 166 1  شماره 

صفحات  -

تاریخ انتشار 2004